Recursive partitioning for heterogeneous causal effects

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Recursive partitioning for heterogeneous causal effects.

In this paper we propose methods for estimating heterogeneity in causal effects in experimental and observational studies and for conducting hypothesis tests about the magnitude of differences in treatment effects across subsets of the population. We provide a data-driven approach to partition the data into subpopulations that differ in the magnitude of their treatment effects. The approach ena...

متن کامل

Sorting by Recursive Partitioning

We present a new O(nlglgn) time sort algorithm that is more robust than O(n) distribution sorting algorithms. The algorithm uses a recursive partition-concatenate approach, partitioning each set into a variable number of subsets using information gathered dynamically during execution. Sequences are partitioned using statistical information computed during the sort for each sequence. _ Space com...

متن کامل

Isotonic Recursive Partitioning

Isotonic regression is a well-known nonparametric tool for fitting monotonic models and has been studied from both theoretical and practical aspects for several decades, with applications in psychology, medicine, biology, among others. However, it has enjoyed only limited interest in recent years in the context of modern statistical applications. We believe the two major reasons for this limite...

متن کامل

Model-based Recursive Partitioning

Recursive partitioning is embedded into the general and well-established class of parametric models that can be fitted using M-type estimators (including maximum likelihood). An algorithm for model-based recursive partitioning is suggested for which the basic steps are: (1) fit a parametric model to a data set, (2) test for parameter instability over a set of partitioning variables, (3) if ther...

متن کامل

Machine Learning Methods for Estimating Heterogeneous Causal Effects

In this paper we propose methods for estimating heterogeneity in causal effects in experimental and observational studies, and for conducting inference about the magnitude of the differences in treatment effects across subsets of the population. In applications, our method provides a data-driven approach to determine which subpopulations have large or small treatment effects and to test hypothe...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Proceedings of the National Academy of Sciences

سال: 2016

ISSN: 0027-8424,1091-6490

DOI: 10.1073/pnas.1510489113